Western Municipal Water District Western Riverside County Regional Wastewater Treatment Plant BIOSOLIDS MONITORING REPORT CALENDAR YEAR 2001

Order No. 97-2

NPDES No. CA8000316

January 14, 2002

I Certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

RILL BEAM
Plant Manager

BB/al

WESTERN RIVERSIDE COUNTY REGIONAL WASTEWATER TREATMENT PLANT

BIOSOLIDS REPORT 2001

Process Description

The Western Riverside County Regional Wastewater Treatment Plant (WRCRWTP) utilizes a 4.41-MG oxidation ditch for initial secondary treatment. From the oxidation ditch, the sludge is allowed to settle in secondary clarifiers. The continuously wasted sludge is then thickened and fed to two aerobic digesters for further sludge stabilization. The digesters were primarily operated in series mode during 2001. The primary digester receives the thickened sludge while the secondary digester receives transferred sludge from the primary digester daily to maintain an overall system mass balance.

The oxidation ditch was maintained at an SRT of between 12 to 20 days through out this reporting period and at a temperature of at least 20° C, while the digesters have been maintained at an SRT greater than 45 days at temperatures exceeding 30°C. A total of 725.47 dry metric tons of biosolids on a dry weight basis were produced during the calendar year of 2001. A total of 560.40 dry metric tons of biosolids were produced during the calendar year of 2000. All biosolids were either land applied or composted by Synagro at their composting facility.

Class B Biosolids Reduction Requirements

Vector reduction requirements were met by either maintaining a volatile solids reduction of at least 38% in the digesters or by maintaining a SOUR of less than or equal to 1.5 mg/g/hour on a dry weight basis. Supporting data for all reductions can be found in the following tables.

The 2001 Biosolids Land Application Annual Report and Land Application Monthly Reports prepared by Synagro West, Inc. can be found in Appendix A of this report along with all supporting laboratory results. This report includes:

- Biosolids Site Summary
- Site Specific Information
- Biosolids Analyses Summary

Appendix B contains the Synagro Biosolids Composting Annual Report that includes:

- The mass of biosolids received at the Regional Composting Facility (RCF) on a monthly basis.
- Monthly certification that the compost produced meets US EPA class A criteria
- Input/output of materials at the RCF for 2001.

WESTERN RIVERSIDE COUNTY REGIONAL WASTEWATER TREATMENT PLANT

CLASS B BIOSOLIDS REDUCTION 2001

JANUARY 2001 AVERAGE				
Vector Attraction		Pathogen Reduction		
			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
39	NA	45	NA	

MADOU COOL AVEDAGE					
i	MARCH 2001 AVERAGE				
Vector A	Attraction	Pathogen	Reduction		
			Fecal		
İ			Coliform		
% Vol		Combined	Geometric		
Reduction	SOUR's	SRT Days	Mean		
NA	0.8	40	NA		

MAY 2001 AVERAGE				
Vector Attraction		Pathogen Reduction		
			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
48	0.9	74	NA	

JULY 2001 AVERAGE					
Vector Attraction		Pathogen Reduction			
			Fecal		
			Coliform		
% Vol		Combined	Geometric		
Reduction	SOUR's	SRT Days	Mean		
48	2.7	66	163		

SEPTEMBER 2001 AVERAGE				
Vector Attraction		Pathogen Reduction		
			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
49	1.3	53	417	

NOVEMBER 2001 AVERAGE				
Vector Attraction		Pathogen Reduction		
			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
43	1.4	185	2,820	

FEBRUARY 2001 AVERAGE				
Vector Attraction		Pathogen Reduction		
			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
39	0.6	47	NA	

APRIL 2001 AVERAGE				
Vector Attraction		Pathogen Reduction		
			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
42	0.9	66	NA	

JUNE 2001 AVERAGE				
Vector Attraction		Pathogen Reduction		
			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
49	1.4	69	NA	

	AUGUST 2001 AVERAGE				
	Vector Attraction		Pathogen Reduction		
				Fecal	
				Coliform	
	% Vol		Combined	Geometric	
	Reduction	SOUR's	SRT Days	Mean	
i	49	1.1	50	459	

OCTOBER 2001 AVERAGE				
Vector A	Attraction	Pathogen	Reduction	
1			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
53	0.71	119	393	

DECEMBER 2001 AVERAGE				
Vector Attraction		Pathogen Reduction		
			Fecal	
			Coliform	
% Vol		Combined	Geometric	
Reduction	SOUR's	SRT Days	Mean	
48	1.04	71	2,715	

Note: Only one parameter needs to be met for vector attraction and pathogen reduction. Vector attraction limits: 38% volatile solids reduction or SOUR's equal to or less than 1.5 Pathogen reduction limits: Previous data indicates that fecal coliform reductions can be met at a digester temperature of 30°C with a combined SRT of less than 34 days or a fecal coliform geometric mean of less than 2 million MPN.

WESTEIN RIVEINSIDE COUNTY REGIONAL WASTEWATER TREATMENT PLANT

QUARTERLY ANALYSIS DIGESTER RESULTS

1st Quarter	Analysis March	2001	2nd Quarte	r Analysis June	2001	3rd Quarter Ar	nalysis Septem	ber 2001	4th Quarter Ai	nalysis Decemb	ber 2001
	Pollutant Concentration			Pollutant Concentration			Pollutant Concentration			Pollutant Concentration	
	Limits for EQ and PC			Limits for EQ			Limits for EQ			Limits for EQ	
Constitent	Biosolids	Results	Constitunt	and PC	D 16 -		and PC			and PC	
Constitent	mg/kg	mg/kg	Constitent	Biosolids	Results	Constitent	Biosolids	Results	Constitent	Biosolids	Results
				mg/kg	mg/kg		mg/kg	mg/kg		mg/kg	mg/kg
Arsenic	41	ND	Arsenic	41	5	Arsenic	41	ND	Arsenic	41	ND
Cadmium	39	2	Cadmium	39	2	Cadmium	39	3	Cadmium	39	2
Chromium	1,200	28	Chromium	1,200	26	Chromium	1,200	37	Chromium	1,200	33
Copper	1,500	690	Copper	1,500	410	Copper	1,500	540	Copper	1,500	460
Lead	300	400	Lead	300	28	Lead	300	40	Lead	300	28
Mercury	17	ND	Mercury	17	ND	Mercury	17	ND	Mercury	17	ND
Molybdenum	75	11	Molybdenum	75	7	Molybdenum	75	6	Molybdenum	75	14
Nickel	420	24	Nickel	420	21	Nickel	420	30	Nickel	420	22
Selenium	36	7	Selenium	36	6	Selenium	36	7	Selenium	36	8
Zinc	2,800	680	Zinc	2,800	530	Zinc	2,800	810	Zinc	2,800	
NH ₃	NA	910	NH ₃	NA	1600	NH ₃	NA NA	1500	NH ₃	2,800 NA	810 420
NO ₂	NA	410	NO ₂	NA	ND	NO ₂	NA	ND	NO ₂	NA NA	
NO ₃	NA	ND	NO ₃	NA	ND	NO ₃	NA	ND	NO ₃	NA NA	ND 5

WESTERN RIVERSIDE COUNTY REGIONAL WASTEWATER TREATMENT PLANT

BIOSOLIDS PRODUCED 2001

JANUARY

	DRY TONS	WET TONS
LAND APPLIED	41.6	235.27
COMPOSTED	10.0	56.55

	DRY TONS	WET TONS
LAND APPLIED	39.0	192.37
COMPOSTED	26.7	150.71

MARCH

5 (Sept. 20)	DRY TONS	WET TONS
LAND APPLIED	53.7	179.38
COMPOSTED	6.8	38.6

APRIL

FEBRUARY

	DRY TONS	WET TONS
LAND APPLIED	32.7	170.42
COMPOSTED	0	0

MAY

	DRY TONS	WET TONS
LAND APPLIED	59.2	196.52
COMPOSTED	7.6	25.19

JUNE

7.4	DRY TONS	WET TONS
LAND APPLIED	18.5	61.36
COMPOSTED	41.5	137.81

JULY

	JOE .	
	DRY TONS	WET TONS
LAND APPLIED		
COMPOSTED	71.5	237.39

AUGUST

	DRY TONS	WET TONS
LAND APPLIED	28.3	94.00
COMPOSTED	75.6	250.72

SEPTEMBER

OLI ILIVIDLIN			
	DRY TONS	WET TONS	
LAND APPLIED	18.6	103.46	
COMPOSTED	36.3	120.28	

OCTOBER

	DRY TONS	WET TONS
LAND APPLIED	30.6	169.59
COMPOSTED	34.3	124.69

NOVEMBER

	DRY TONS	WET TONS
LAND APPLIED	23.3	84.59
COMPOSTED	54.3	197.66

DECEMBER

	DRY TONS	WET TONS
LAND APPLIED		
COMPOSTED	89.6	326.13

Total wet tons Produced for 2001

3152.69

TOTAL DRY TONS LAND APPLIED FOR 2001 345.46 **TOTAL DRY TONS COMPOSTED FOR 2001** 454.22

TOTAL BIOSOLIDS PRODUCED DRY TONS FOR 2001 799.68 TOTAL BIOSOLIDS PRODUCED DRY METRIC TONS FOR 2001 725.47 TOTAL BIOSOLIDS PRODUCED DRY METRIC TONS FOR 2000 560.40 TOTAL BIOSOLIDS PRODUCED DRY METRIC TONS FOR 1999 1033.9 TOTAL BIOSOLIDS PRODUCED DRY METRIC TONS FOR 1998

313 :33 COMP DAT

A Residuals Management Company

Biosolids Land Application Annual Report

for

Western Riverside RWA

2001

WESTERN RIVERSIDE CO. RWA, CA CAKE

MONTH/YEAR	<u>AMOUNT</u>	<u>UNIT</u>	DRY TONS	<u>UNIT</u>	DRY METRIC TONS
January 2001	235.27	W	41.64	D	37.77
February 2001	192.37	W	38.96	Ď	35.33
March 2001	179.38	W	53.65	Ď	48.66
April 2001	170.41	W	32.70	D	29.66
May 2001	196.52	W	59.23	D	53.72
June 2001	61.36	W	18.49	D	16.77
August 2001	94.00	W	28.33	D	25.70
September 2001	103.46	W	18.64	D	16.91
October 2001	169.59	W	30.56	D	27.72
November 2001	84.59	W	23.25	D	21.08
YEARLY TOTAL:	1,486.95	W	345.46	D	313.33

ANNUAL RESIDUAL SAMPLING SUMMARY FORM

Facility Name:

WESTERN RIVERSIDE CO. RWA, CA

Laboratory

1) A & L EASTERN AGRICULTURAL LABS

NPDES#:

WWTP Name:

WESTERN RIVERSIDE COUNTY RWA

Residual Analysis Data Product Type Lab Usage From Through	CAK 01/01/01 01/31/01	CAK 02/01/01 02/28/01	CAK 03/01/01	CAK 04/01/01	CAK 05/01/01	CAK 09/01/01	CAK 11/01/01
Percent Solids	17.7	20.25	03/31/01 29.91	04/30/01 19.19	08/31/01 30.14	10/31/01 18.02	11/30/01 27.48
PARAMETERS (mg/kg dry weight)							
Arsenic Cadmium Chromium Copper Lead Mercury Molybdenum Nickel Selenium Zinc TKN Ammonia-Nitrogen	4.46 2.8 35 695 36 1.68 14 29 4.85 766 64,900 11,500	5.18 2.6 26 502 29 2.23 11 24 4.77 635 67,300	2.71 4.1 58 404 33 1.98 9 49 10.97 580 36,800	2.15 2.4 42 545 31 1.95 10 31 7.45 672 52,800	3.92 6.5 48 791 80 3.7 27 21 8.29 923 37,000	4.69 3.4 53 546 23 2.21 10 32 8.57 735 48,900	0.38 3.1 39 487 28 1.63 7 34 3.2 707 40,700
Nitrate-Nitrogen Total Phosphorus	<10 44,200	11,700 10 33,800	7,500 11 0	4,800 11 0	4,700 177 0	8,100 91 0	9,400 <10 0